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A numerical study is presented for the eigensolution statistics of large N x N real 
and symmetric sparse random matrices as a function of the mean number p of 
nonzero elements per row. The model shows classical percolation and quantum 
localization transitions at Pc = 1 and pq > 1, respectively. In the rigid limit p = N 
we demonstrate that the averaged density of states follows the Wigner semicircle 
law and the corresponding nearest energy-level-spacing distribution function 
P(S) obeys the Wigner surmise. In the very sparse matrix limit p ~ N ,  with 
p>pq,  a singularity (p(E)) oc l/[El is found as [El ~ 0  and exponential tails 
develop in the high-lE I regions, but the P(S) distribution remains consistent 
with level repulsion. The localization properties of the model are examined 
by studying both the eigenvector amplitude and the density fluctuations. The 
value pq ~ 1.4 is roughly estimated, in agreement with previous studies of the 
Anderson transition in dilute Bethe lattices. 

KEY WORDS: Sparse random matrix ensemble; Wigner-Dyson statistics; 
density-of-states singularity; Bethe lattice; quantum percolation. 

1. I N T R O D U C T I O N  

Many problems of both classical and quantum physics have discrete 
representations in terms of Nx N random matrices and the continuum 
limit is recovered when the order N of the matrix is large. The matrix 
elements are independent random variables chosen by a probability dis- 
tribution and the matrices define a statistical matrix ensemble. From the 
complete eigensolutions for every member of the ensemble both averages 
and fluctuations of interesting physical quantities can be computed. 

Matrices where the randomness plays an important rote were intro- 

1 Research Center of Crete, F.O.R.T.H., Heraklion, P.O. Box 1527, Crete, Greece. Permanent 
address: Department of Physics, University of Ioannina, Ioannina 45 110, Greece. 

361 

0022-4715/92/1000-0361506.50/0 �9 1992 Plenum Publishing Corporation 



362 Evangelou 

duced long ago in the context of nuclear physics by Wigner and Dyson. (~ 4) 
They were used to overcome the tremendous difficulties of finding eigen- 
solutions for large many-body Hamiltonians, using, instead, an ensemble of 
random matrices which do not keep the details but only the symmetry of 
the original problem. All the matrix elements of the corresponding random 
matrices are independently distributed Gaussian random variables. The 
required quantity is the joint probability distribution of all the eigenvalues, 
so that the original diagonalization is now replaced by a statistical 
probability distribution problem. 

The Wigner-Dyson matrices are classified according to symmetry into 
three universality classes. The case of real and symmetric random matrices 
defines the so-called Gaussian orthogonal ensemble (GOE), (3) which is 
exactly solvable. The averaged density of states (DOS) (p(E)), which is 
the probability of finding one energy eigenvalue E, obeys a simple semi- 
circle law. (4) The corresponding DOS fluctuations can be estimated to a 
first approximation by the nearest-level-spacing S distribution function 
P(S). The distribution P(S) measures two-eigenvalue correlations and it 
turns out that the probability of finding two energy levels close to each other 
is very low. This implies strongly correlated eigenvalues repelling their 
closest neighbors. Moreover, P(S) is a universal quantity, following the 
Wigner surmise, (4) which depends only on symmetry and not on the random 
distribution for the matrix elements used as input parameters. The GOE 
eigenvector statistics is known (3~ to be simply characterized by the squared 
Gaussian Z 2 distribution law, independent of the distribution of the eigen- 
values. Such, constant on average, eigenvector amplitude components are 
extended (delocalized) in nature. 

In solid state and statistical physics many problems are also commonly 
studied in terms of random matrices. The present work is motivated by the 
fundamental problem of electronic structure in disordered lattice systems 
and wave propagation in inhomogeneous media. The corresponding matrix 
representation is known as the tight-binding random matrix ensemble 
(TBRME) (see, e.g., ref. 5), which has been widely studied since the realiza- 
tion made by Anderson (6) that eigenvectors may show exponential decay 
properties due to the presence of disorder. The matrices are realized as a 
discrete representation of the Schr6dinger equation, in a hypercubic lattice 
of sites, choosing as basis set the conventional local site orbitals Ln). The 
diagonal matrix elements (nl H In) denote the potential ~n at site In). The 
off-diagonal matrix elements (n[ H In') are different from zero only when 
n and n' are nearest neighbors in the lattice. The nonzero off-diagonal 
values define the hopping matrix element V, which is proportional to 
h2/2ma 2, where h is Planck's constant, m is the electron effective mass, and 
a is the lattice spacing. 
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The Anderson model (6) arises when the G are random variables while 
V is a constant setting the energy scale. Then for every realization of the 
random set G, n = 1, 2,..., N, one obtains a member of the corresponding 
TBRME. In the absence of spin effects the tight-binding random matrices 
are real and symmetric but clearly of drastically different structure than the 
GOE. Their differences lie in the fact that they are instead short-ranged 
and sparse. They have in d dimensions random diagonal matrix elements 
(diagonal disorder) and d off-diagonal matrix elements per matrix row 
distributed close to the diagonal, which may also be random variables 
(off-diagonal disorder); the rest of the matrix elements are identically equal 
to zero. This specific matrix structure arises, as discussed above, because 
the matrix elements connecting only the nearest neighbors of every lattice 
site are different from zero. 

The TBRME can be also defined on pseudolattices, such as the Bethe 
lattice, characterized by a coordination number. The Bethe lattice can 
roughly approximate real d-dimensional lattices of the same coordination 
number. This correspondence becomes precise only for the case of infinite 
coordination, where the Bethe lattice maps onto an infinite-d lattice. 
Random matrix ensembles more sparse than the TBRME can be obtained 
by diluting the real or the pseudolattices, that is, by removing sites or 
bonds at random, leading to a percolating cluster lattice geometry. (7) Then 
the coordination number, which counts the average number of nearest 
neighbors for each site or equivalently the average number of nondiagonal 
elements per matrix row, takes a value lower than d. 

The present study focuses on a mean-field case. We consider the d = oo 
TBRME where each site is allowed to extend its range not as usual to its 
nearest neighbors, but to all the other sites. In this limit the N x N matrices 
become full, having only nonzero elements, and for appropriate choices for 
the random distributions ('41 are precisely the GOE matrices. The sparse 
random matrices studied in this paper are similar to those obtained from 
diluting such a d =  oo TBRME. This is equivalent to considering a quan- 
tum percolation problem (v) on the d =  oo TBRME or the oo-coordination 
dilute Bethe lattice. Such kinds of sparse matrices also appear in a variety 
of related problems, ranging from dilute spin systems (s) to combinatorial 
optimization. (9) 

We introduce a sparse random matrix ensemble (SRME) (1~ charac- 
terized by a finite mean number p of nonzero elements per row. When 
p = N the GOE limit is obtained and small p values simulate more realistic 
finite-d dilute lattice situations. The SRME, apart from being useful in 
understanding many physical and engineering problems, has a profound 
interest for the following reasons: First, it allows us to consider the limits 
of validity of the Wigner-Dyson theories and their universal statistics when 
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the matrices deviate from GOE. Second, the SRME can be used as a model 
for considering fluctuation properties of disordered conductors, (15 17) when 
they depart from the delocalization limit and approach the localization 
threshold. More important is the fact that the SRME permits the descrip- 
tion of a delocalization-localization Anderson transition at a critical 
value of p = pq. Third, the model can be used for studying the quantum- 
mechanical behavior of systems that are classically chaotic. (is) The main, 
question in this case is, again, whether the Wigner-Dyson universality 
remains under these conditions. Finally, an extra reason for considering 
this model is that it is amenable, up to some extent, to various analytical 
treatments using the replica and supersymmetric method, (11-14), unlike the 
original TBRME on 2- and 3-dimensional lattices. 

Since the known remarkable analytical solutions for the SRME (n 14) 
are nevertheless limited in their extent, we chose to study the problem 
numerically. We are aiming for the independent confirmation of the pre- 
vious analytical results via an independent method and since our numerical 
approach does not suffer from the same sorts of limitations, we can answer 
an even more general set of questions. In the rest of the paper we proceed 
as follows: The model and the method of calculation can be found in 
Section 2. In Section 3 we focus on the averaged DOS and in particular 
demonstrate the appearance of the (p(E)) ~: l/]El singularity as [E[--* 0, 
in the very sparse matrix limit p ~ N. The exponential tails in the high-lE[ 
regions can be also seen in this limit. In Section 4 the eigenvalue statistics 
is considered and we apply a quantitative criterion of localization based on 
the DOS fluctuations, so that we are able to locate the Anderson transition 
threshold value pq. In Section 5 we present results for the level-spacing 
distribution function P(S) as another important measure of the DOS 
fluctuations. Moreover, we examine the validity of the G O E universality 
and present strong evidence that it persists even in the very sparse random 
matrix limit as long as p > pq. Besides the demonstration of the behavior 
for the DOS fluctuations, we present results on the corresponding eigen- 
vector amplitude component distributions in Section 6. Finally, we discuss 
our findings in relation to the Anderson transition in dilute Bethe lattices, 
in connection with previous studies, and we present our conclusions in 
Section 7. 

2. THE MODEL AND THE METHOD OF CALCULATION 

We consider real and symmetric N x N matrices 

N 

H---~ ~ Hi, j l i ) ( j l  
i , j ~  1 

(i) 
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written in a convenient basis set (Ji), i =  1, 2,..., N). The matrix elements 
Hi, s( = H*j = Hi, i) are independent, identically distributed random 
variables chosen from the probability distribution 

The model of Eq. (1) with the distribution from Eq. (2) contains one basic 
parameter, the "mean connectivity" number p. We start with the GOE 
when p = N and by lowering p we can study deviations from the GOE. 
Extensions of the model are obtained if we vary the ratio between the 
positive and the negative matrix elements, which from Eq. (2) are equal to 
one on the average. Apart from such asymmetry, we can also introduce a 
continuous, rather than binary, distribution of the random matrix 
elements. In the latter case another parameter must be added describing the 
additional randomness. No qualitative changes in the results reported here 
were found for such extended SRMEs. 

The method of calculation mostly relies on the numerical computation 
of eigenvalues and eigenvectors in finite samples from the SRME. Our 
matrix ensemble consists of matrices of sizes extending up to 2000 x 2000. 
For the numerical diagonalization it is convenient to employ the usual 
vectorized diagonalization routines, although the Lanczos algorithm (e.g., 
ref. 19) is also suitable, by making use of the sparse nature of the matrices. 
The complete eigensolutions (eigenvalues and cigenvectors) in the whole 
energy domain are found for a given p value for various N values and a 
large ensemble was considered. We have also allowed the matrix size N to 
vary, for a given p, in order to determine the large-N behavior. We mostly 
focus on the spectral properties of the model and determine the resulting 
spectral DOS as well the DOS fluctuations. The localization properties of 
the model require a more detailed study by including the eigenvectors as 
discussed in Section 6. 

The DOS calculation proceeds as follows: We collect all the eigen- 
values in energy bins for many different, randomly generated matrices, so 
that the average (p(E))  can be determined. The errors arising in the 
calculations have been estimated and are related to a novel localization 
criterion as follows: If the mean number of eigenvalues in a given energy 
bin of width E is (n(E)),  then it implies a variance ( ~ n ( E ) 2 ) =  
(n(E)2) - ( n ( E ) )  2 proportional to the mean (n(E)).  This is a result 
of ordinary Poisson statistics, but refers only to localized states. The 
sample-to-sample DOS fluctuations are instead even smaller for delocalized 
states as a consequence of the validity of the Wigner-Dyson theory. ~  
As proposed in ref. 15, we expect ((Sn(E) 2) to be much lower than (n(E))  
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for delocalized states, varying logarithmically with (n(E)). Therefore, the 
relative variance (6n(E)2)/(n(E)) is of order one when the states in the 
energy bin are localized and much smaller than one and decreasing with 
(n(E)) when they are delocalized. This reasoning is valid when (n(E)) 
is a small number. In fact, it was estimated that for critical states (15) 
(6n(E) 2) is also proportional to (n(E)) ,  but with a proportionality 
index of about 1/2. Therefore, no significant statistical error arise for calcul- 
ations of averaged values in regions of delocalized states as performed in 
Section 3. The errors become more significant, reaching normal statistical 
bounds in the localized phase. 

Another source of error in our type of calculation arises because of the 
finite size N for each chosen sample. This results in a limited number of 
sites in a given energy bin because the average level spacing oc 1IN is finite. 
As a consequence, when N is not large enough, the spectrum of eigen- 
values shows pronounced discreteness. This kind of error also limits us in 
extending the calculation down to very small energies. We have also 
checked convergence of our results by varying the system size. For the 
system sizes considered we have found a large number of eigenvalues for 
IEI/>0.001 which were collected in energy bins of width AE= 0.025. The 
above errors have been monitored in our calculations by choosing many 
random sample matrices and large enough matrix sizes. The total error 
has been minimized to within a few percent, and our results might be 
interpreted as refering to the infinite-N limit. 

3. THE AVERAGED DOS ( p ( E ) )  

The DOS at a particular value of p is symmetric with respect to E = 0. 
We introduced the normalization condition (Tr  H 2)  = AT, which sets the 
energy scale, since it requires the second moment of the DOS to be always 
one. This condition guarantees that the DOS has a compact structure in 
the region [ - 2 ,  2] when p = N. For p ~ N the majority of eigenvalues still 
lie in the same region, but exponential tails develop outside [ - 2 ,  2]. We 
report numerical results for the DOS at various p's in Fig. 1. It can be seen 
that for very high down to moderate p values the Wigner semicircle law 

( _F2 1,  
1 1 IEI ~ 2  (3) (p(E) ) =-~ 4 J ' 

holds to a high accuracy. By lowering p even further, down to values 
corresponding to 2- and 3-dimensional real lattices, we observe two charac- 
teristic novel features of the DOS: First, for special energies whose number 
progressively increases, 6-function peaks are seen. They are special 
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degenerate  states due to the dilute s tructure of  the matrices. A simple 
explanat ion for their existence was p roposed  (2~ for quan tum percolat ion 
models  in 2 and 3 dimensions.  They occur  because of special regions of the 
self-similar fractal percolat ing cluster geometry.  It must  be ment ioned  that  
in our  case the percolat ing cluster is defined on an infini tely-coordinated 
dilute Bethe lattice. 

The  second and more  impor tan t  observa t ion  refers to the cont inuous  
componen t  of the spec t rum close to the center. For  small p values a 
singularity of the form 

1 
(p(E)) oc IEI log([El)  3 as ]El ~ 0  (4) 

appears.  Since the E range where the diverging (p(E)) occurs is very close 
to zero and the type of divergence of the D O S  is not  clearly visible due to 
the coarse graining procedure  involved in Figs. l b - l d ,  we choose to plot  
the averaged integrated density of  states ( I D O S )  against  E by including the 
very small energies. The  I D O S  is given by the integral over  the rhs of the 
Eq. (4), which is p ropor t iona l  to (1/log IEI) 2. Therefore,  in the double  

Fig. 1. Plot of the normalized averaged DOS (p(E)) together with the Wigner semicircle 
law for sparse random matrices of N= 2000 with four different values of p: (a) p = N from 
1000 matrices, (b) p = 8 from 200 matrices, (c) p = 5 from 100 matrices, (d) p = 3 for 100 
matrices, and (e) p = 15 and p = 8 together with the Wigner semicircle law superimposed. 

822/69/1-2-24 
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Fig. 1 (Continued) 
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Fig. 2. Plot of the averaged integrated density of states N(E) for E close to E = 0  for 
(a) p = 5 and (b) p = 3. The straight lines imply that the singularity is of the form of Eq. (4). 

logarithmic plot of Fig. 2 the law of Eq. (4) implies that for small p values 
the data should lie on straight lines. Despite the various sources of error, 
the data lie rather accurately on straight lines and the peak of the form 
( p ( E ) )  oc l/[El is displayed. 

From the results of refs. 11-13, where a reduction of the problem to 
an integral equation was achieved, a power of 2 instead of 3 is expected 
for the logarithmic part of the singularity. Our data instead correspond 
precisely to a Dyson singularity. (21) The deviation of our results from the 
calculations of refs. 11-13, if not genuine, could be also understood 
as arising from numerical difficulties in our approach due to the very 
small energy range considered. Such a singular structure for the DOS was 
previously shown (22) in disordered lattices with the randomness in the off- 
diagonal matrix elements. In fact the Dyson singularity is a signal of large 
fluctuations in a random medium and was related to log-normal distribu- 
tions, 1/f-noise phenomena, (22) and localization. At values of p close to Pc 
we see a dip of the DOS near the band center, as in refs. 19 and 20. 

4. THE DOS F L U C T U A T I O N S  A N D  THE Q U A N T U M  
PERCOLATION T R A N S I T I O N  

From Eq. (2) the mean and the variance of the random matrix 
elements are (Hi  j )  = 0 and 2 (Hi,  j ) =  1/N, respectively. Therefore, the 
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disorder vanishes in the thermodynamic limit and one might conclude that 
the SRME belongs to the delocalized phase for any p. However, this is not 
so, because the underlying percolating geometrical disorder remains, so 
that classical and quantum percolation transitions are expected. These 
occur at values p ,  = 1 and pq, in general higher than Pc, respectively. The 
estimate of Pc = 1 arises simply from the usual dilute Bethe lattice percola- 
tion concentration defined as the inverse connectivity 1/N. (7) For the 
SRME when p >~ 1 an infinite connected cluster appears. A Bethe lattice of 
connectivity a studied in ref. 23 allowed a determination of pq, estimated 
from the solution of the equation 

! + [o-2pq]-1= (Gpq)2/(,r-l) (5) 

For the infinitely coordinated case (a --+ oo ) it gives the value pq ~- 1.4pc, a 
bound which implies that for p values below pq ~ 1.4 all states should 
become localized. Extimates for the quantum percolation thresholds of 
finite-connectivity Bethe lattices have also been reported in ref. 19. 

In order to establish the pq value, we use a simple criterion of localiza- 
tion based on the DOS fluctuations. It involves the relative variance ratio 
R =  ( 6 n ( E ) Z ) / ( n ( E ) ) ,  which is studied for various p values. When R is 
not much smaller than one and does not diminish upon increasing the 
matrix size the corresponding states must have reached the localization 
point. Otherwise, the states remain delocalized. This allows a simple 
criterion of localization to be established simply as R ~> 1/2. 

In Figs. 3a-3d the DOS is displayed together with the relative fluctua- 
tions for p = 1 to 1.6 by collecting the eigenvalues in specific energy bins. 
For such small values of p the very dilute structure of the matrices causes 
the multiple appearance of eigenvalues at many energies. In particular, for 
P = Pc = 1 a dip of the DOS can be seen near the band center. The measure 
of the relative DOS fluctuations is rather high in this case, denoting 
localized states. From Figs. 3a-3d a quantum percolation threshold of 
about 1.4 is found, in agreement with ref. 23. 

5. THE LEVEL-SPACING D ISTRIBUTION FUNCTION P(S) 

In order to unravel the localization properties oI the model, we have 
also considered the most common spectral fluctuation measure, the 
nearest-level-spacing distribution function P(S). For delocalized states the 
Wigner-Dyson statistics is expected to occur related to a smooth, 
correlated spectrum exhibiting level repulsion and spectral rigidity. For  the 
localized phase instead the corresponding spectra are uncorrelated and 
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should obey normal statistics. For P(S) this implies the law of the well- 
known Wigner surmise, 

P(S) = (rcS/2) exp(-  rcS2/4) (6) 

for delocalized states, normalized so that the average level spacing is one. 
For localized states instead P(S) should cross over to the usual Poisson 
l aw (24) 

P(S)=exp(-S). (7) 

We have studied the distribution function P(S) of the nearest-energy- 
level spacings Sn = En+l-En for various p values. The calculations are 
done by obtaining the eigenvalues for many random runs, their total 
number being approximately 50,000, and subsequently by deconvoluting 
the spectrum, (17) in order to retain a constant DOS. This is equivalent to 
studying the distribution of the difference 

0 
<Y(E.+I))- <Y(E.)) = (E.+I- E~) ~-~ <Y(E)> 

where ( JF (E) )  is the averaged IDOS at energy E. The result for a very 
small value of p = 3 is displayed in Fig. 4, shown to agree perfectly well 

1.o 

P Cs) 

o,5 

0 . 0  
0 

\ 

1 2 3 
S 

Fig. 4. The calculated level-spacing distribution function for N =  i000 and p =  3. The 
data are in histogram form for 100 random matrices and cover the full energy range. The 
horizontal line is in units of the local mean-level spacing and the solid curve is the Wigner 
surmise, Eq. (6). 
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with the corresponding Wigner surmise, Eq. (6). In ref. 10, a crossover to 
a Poisson law was found for p values below the critical concentration pq. 
The remarkable result of this section is the perfect validity of the Wigner- 
Dyson universality even when one is largely deviating from the GOE limit. 

6. THE EIGENVECTOR A M P L I T U D E  F L U C T U A T I O N S  

In order to probe the localization properties of the model, we have 
also considered the corresponding eigenvectors. Their delocalized nature is 
clearly seen to remain down to small p values, as long as p ~> pq. The delo- 
calized eigenvector amplitude distributions shown in Fig. 5 for p = 3 are 
also likely to display multifractal scaling, as was previously observed in a 
related banded random matrix ensemble (BRME). (25'26) It must be pointed 
out, however, that the SRME is strictly different from the BRME proposed 
in ref. 26. In the N =  ~ limit the BRME always has localized states and no 
Anderson transition is expected to occur if the range of nonzero matrix 
elements is shorter than N. 

In order to determine the extent of localization, we have also 
considered a very common localization measure: This is the inverse 
participation ratio (IPR (i)) for the energy eigenvalue Ei, defined as 
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Fig.  5. Plot of a particular eigenvector amplitude for N =  2000 and p = 3 for different spatial 

regions in order to display its random self-similar character. 
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where ,/, (i) ~.j, j =  1, 2 ..... N, are the corresponding eigenvector components. 
The I P R  should somehow count the inverse of the number of sites where 
the amplitude is concentrated. Therefore, for very delocalized states it 
should be very low, proportional to l /N,  approaching one only in the 
opposite limit of extreme localization. Moreover, it is known that 1PR is a 
wildly fluctuating measure, especially close to the localization transition. 

In Figs. 6 and 7 the IPR is shown for various p values for two matrix 
sizes. It can be seen that for low p < pq the eigenvectors have small localiza- 
tion lengths, being localized in less than about x /N sites. The straight 
vertical lines in Figs. 6a-6c denote the special localized states due to the 
percolating cluster geometry discussed in Section 3. For higher p >> pq the 
eigenvectors displayed in Figs. 6d and 6e become delocalized. It is worth 
pointing out two facts: First, for the results with the larger N shown in 
Fig. 7 it is seen that for delocalized eigenstates (p > pq) the I P R  fluctua- 
tions diminish while they remain significant only for localized states 
(p < pq). The second observation refers to Figs. 6d and 7c, where near the 
center of the spectrum eigenvectors with shorter localization lengths are 
seen (larger IPR) ,  as normally happens close to the spectral edges. The 
spectral region where this occurs corresponds to the 1/E-singularity peak, 
which is therefore associated with states with shorter localization lengths. 
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Fig. 6. Plot of the IPR versus energy for N =  100 and 500 r an d o m matrices: (a) p = 1, 
(b) p = 1.4, (c) p = 1.6, (d) p = 5, (e) p = N. 
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7. D I S C U S S I O N  

The Anderson localization phenomenon implies a drastic departure 
not only from the conventional Bloch theory of periodic modulated eigen: 
vector amplitudes in nonrandom matrices, but also from the constant on 
average but fluctuating eigenvector amplitudes in the Gaussian matrix 
ensembles. The latter correspond to  high-coordination number or high- 
dimensionality lattice systems where no localization is expected. As a 
consequence of this fact, the Wigner surmise and the level repulsion for the 
eigenvalue fluctuations associated with the GOE is naturally expected to 
characterize the delocalized parts of a spectrum in the presence of disorder. 
This analogy has been quite rigorous and has been exploited for respon- 
sability of the mesoscopic physics fluctuation phenomena in small metallic 
systems. ~15) On the other hand, for disordered systems of very small coor- 
dination number or low dimensionality it is known that localized states 
should exist and the level spacings must be distributed according to a 
Poisson law, which permits clustering of eigenvalues. (24) From these obser- 
vations it follows that from the spectral fluctuation properties of disordered 
systems alone we can distinguish between delocalized and localized states. 

Results along these lines are reported in this paper for an SRME when 
the coordination number p is allowed to vary. We have studied the problem 
for a range of values of the mean matrix row concentration p starting 
from the GOE limit p = N down to the very dilute percolation limit 
(p = 1). For p much smaller than N we see that the states are unusually 
fluctuating when compared to the GOE states, since we are entering into 
the localization regime. We have also been able to locate the Anderson 
transition, where a drastic change of behavior occurs at a value pq. The 
main results are as follows: (i) The DOS satisfies perfectly the semicircle 
law from p = N down to moderate values of p, and a crossover to a DOS 
with a I/[El-singularity peak for [E[ near zero is seen by lowering p 
significantly. (ii) The nearest-level-statistics distribution is very close to the 
Wigner-surmise law for p >  pq. Results (i) and (ii) signify the importance 
of the Wigner-Dyson theory, even when drastically departing from the 
GOE. (iii) A simple criterion based on the DOS fluctuations allows pq to be 
evaluated, in agreement with previous estimates. (iv) Finally, the eigenvector 
amplitudes are studied and seen to have strong fluctuation properties when 
approaching localization. 

The prospects for future studies of the SRME lie on two fronts: The 
first is its extension in order to include other universality classes, e.g., by 
brakeing the time-reversal invariance. The second is the application of the 
model for exploration of the critical behavior, also in connection with the 
possibility of constructing a mean-field theory of Anderson localization. 
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